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People often make rapid visual judgments of the
properties of surfaces they are going to walk on or
touch. How do they do this when the interactions of
illumination geometry with 3-D material structure and
object shape result in images that inverse optics
algorithms cannot resolve without externally imposed
constraints? A possibly effective strategy would be to
use heuristics based on information that can be gleaned
rapidly from retinal images. By using perceptual scaling
of a large sample of images, combined with
correspondence and canonical correlation analyses, we
discovered that material properties, such as roughness,
thickness, and undulations, are characterized by specific
scales of luminance variations. Using movies, we
demonstrate that observers’ percepts of these 3-D
qualities vary continuously as a function of the relative
energy in corresponding 2-D frequency bands. In
addition, we show that judgments of roughness,
thickness, and undulations are predictably altered by
adaptation to dynamic noise at the corresponding scales.
These results establish that the scale of local 3-D
structure is critical in perceiving material properties, and
that relative contrast at particular spatial frequencies is
important for perceiving the critical 3-D structure from
shading cues, so that cortical mechanisms for estimating
material properties could be constructed by combining
the parallel outputs of sets of frequency-selective
neurons. These results also provide methods for remote
sensing of material properties in machine vision, and
rapid synthesis, editing and transfer of material
properties for computer graphics and animation.

Introduction

When deciding where to walk, it is not sufficient to
recognize a path, but also necessary to ascertain that it
is not slippery (Lesch, Chang, & Chang, 2008), muddy,
or flooded. When choosing a sweater, it is not enough
to differentiate it from coats and jackets, but also to

judge its warmth and softness. Estimating material
properties is thus often at least as important as
recognizing object classes (Adelson, 2001; Anderson,
2011; Zaidi, 2011).

Sometimes the best way to estimate the relevant
property of a material is to feel, hear, or smell it, but we
reliably ascribe properties to materials just by visual
inspection (Bergmann-Tiest & Kappers, 2007; Binns,
1937). For example, when using sandpaper, we usually
judge the roughness visually, and when buying a
waterproof or water-absorbent material we rely on
visual judgments of porousness rather than making
direct tests. Visual inferences are especially important
when judgments have to be made rapidly or at greater
distance than arm’s length.

In all the examples above, the intended use of the
material specifies the relevant affordances (Gibson,
1986), i.e., properties that allow particular uses, which
in turn determine a suitable observation distance for
resolving diagnostic features. These judgments are
based on the retinal images projected from interactions
between illumination geometry, material structure, and
object shape. Without external constraints, the physics
of these interactions are too involved (Anderson, 2011;
Koenderink & Doorn, 1996; Koenderink, Doorn,
Dana, & Nayar, 1999) for the visual system to estimate
material structure by inverse optics, yet human abilities
to judge material properties such as roughness or
porousness show that we can, to a certain degree, infer
the underlying physical structure from the retinal
image.

In images of materials, the 3-D structure of a surface
is mainly conveyed by shape from shading. Many
algorithms for the recovery of 3-D shape from shading
cues have been proposed in the computational litera-
ture (Breton & Zucker, 1996; Horn, 1970: Ikeuchi &
Horn, 1981; Pentland, 1982), and a few studies have
investigated human performance in recovery of object
shape (De Haan, Erens, & Noest, 1995; Erens,
Kappers, & Koenderink, 1993), but none have studied
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the identification of material properties from shading
cues.

An attractive possibility is that we use heuristics
based on rapidly extracted image properties to infer
those attributes that are relevant to our interaction
with a material. Such heuristics have been proposed
for various material properties, for example, X
junctions and contrast relations for transparency
(Beck, Prazdny, & Ivry, 1984; Metelli, 1985; Robi-
lotto, Khang, & Zaidi, 2002), highlights, contrast,
blur, etc. for the perception of translucency (Fleming
& Bülthoff, 2005), and statistics based on the
luminance distribution of an image for estimating
gloss properties (Motoyoshi, Nishida, Sharan, &
Adelson, 2007; Sharan, Li, Motoyoshi, Nishida, &
Adelson, 2008).

An objection against the use of image statistics for
the recovery of material properties is that they are
useful only under limited conditions mainly because
they disregard spatial structure and scale (Anderson &
Kim, 2009). In the case of gloss, it has been shown that
the perception of surface gloss is affected by the 3-D
structure (Ho, Landy, & Maloney, 2008; Nishida &
Shinya, 1998; Olkkonen & Brainard, 2011; Vangorp,
Laurijssen, & Dutré, 2007; Wijntjes & Pont, 2010), and
velocity flows (Doerschner et al., 2011). Both aspects
are unaccounted for by simple image statistics.
However, this shortcoming could be alleviated by
combining image measures that cover different aspects
of an object’s appearance. Along this line, linear
combinations of image cues have recently been
proposed as predictors for perceived glossiness (Mar-
low, Kim, & Anderson, 2012) and perceived viscosity
(Fleming & Paulun, 2012).

An alternative or complement to this approach could
be image measures that by themselves are reliably
related to 3-D configurations. Pentland (1984a), for
example, reported a correlation between the perceived
roughness of textures and their fractal dimension. He
showed that the fractal dimension of 3-D scenes and
the fractal dimension of their images are identical, thus
providing a direct link between image statistics and
underlying physical 3-D structure.

In this paper, we propose a midlevel perceptual
mechanism for the identification of the material
properties undulation, thickness, and roughness. This
mechanism estimates 3-D surface properties from the 2-
D frequency representation of images. We will show
that spatial frequency analysis is sufficient for rapid
identification of material properties. This success relies
on the repetitive structure of materials, and we discuss
what aspects of the analysis generalize to the recovery
of 3-D object shapes.

To investigate the perception of material properties,
we chose images of fabrics as stimuli. Fabrics are
especially suited for the investigation of material

properties since they are familiar materials that come in
a wide variety and have diverse uses. Fabric properties
are a function of the nature of the fiber and the
structure of the knit or weave. Since these structures
vary within a restricted spatial scale, an additional
advantage is that most fabrics are examined within a
narrow range of distances, similar to what we used in
the experiments.

Material property classification

We started our investigation of the perception of
material properties with an exploratory experiment in
which we asked observers to classify images of
materials on four material property dimensions.

Methods

Stimuli

We cropped 256 color images of fabrics to a size of
150 · 150 pixels (Figure 1). They were presented on a
monitor against a black background. The viewing
distance was 70 cm. At this distance the images
subtended 3.58 of visual angle.

Procedure

We asked observers to rate the materials on four
opponent affordance dimensions: soft–rough, flexible–
stiff, warm–cool, and water-absorbent–water-repellent,
using five-point scales. The scale was presented on the
monitor below the images. The computer mouse was
used to make a choice. To guide observers, we gave
them questions aimed at potential uses: ‘‘If you felt this
material on your skin, would it feel soft or rough?’’; ‘‘If
you folded or draped this material, would it be stiff or
flexible?’’; ‘‘Would clothes made of this material keep
you warm or cool?’’; ‘‘Would you use this material to
repel water or would you use it to absorb water?’’ The
relevant affordance related question was also displayed
on the monitor in each trial.

The scale had two levels for each of the two
properties described as ‘‘very’’ and ‘‘mostly.’’ The
middle scale level could be chosen if neither one of the
two property poles was applicable. For example, for
the property pair soft–rough, the scale levels were: very
soft, mostly soft, neither soft or rough, mostly rough,
very rough. The property dimensions were run in a
blocked design. All property ratings were done in one
session. The image and property sequences were
randomized between observers. Each observer repeated
the experiment once.
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Observers

Nine paid naı̈ve observers (five female, four male)
participated in the experiment. All experiments pre-
sented in this paper were conducted in compliance with
the protocol approved by the institutional review board
at SUNY College of Optometry and the Declaration of
Helsinki.

Data analysis

Since only few images were assigned to the ‘‘very’’
categories, we collapsed the ‘‘mostly’’ and ‘‘very’’
ratings for each property pole. For the subsequent
analysis, we used only images that had been rated
consistently by an observer in both sessions. Fur-
thermore, we excluded the ‘‘neither’’ category, so that
the final data table consisted of the frequencies with
which an image had been rated to belong to each of
the eight properties. The contingency table containing

these frequencies was then analyzed using correspon-
dence analysis (Hirschfeld, 1935). The analysis was
done in R (R Foundation for Statistical Computing,
2013) using the package ca (Nenadic & Greenacre,
2007).

Results

The average percentages of consistently rated
images for the different properties were (the percent-
age of images consistently assigned to the ‘‘neither’’
category are given in parentheses.): soft: 29%, rough:
26% (14%); stiff: 22%, flexible: 32% (5%); warm: 33%,
cool: 21% (9%); water repellent: 19%, water absorbent:
35% (10%). The agreement between the raters as
measured by Krippendorff’s alpha (Gamer, Lemon,
Fellows, & Singh, 2012; Krippendorff, 1980) was
modest (soft–rough: 0.40; stiff–flexible: 0.36; warm–

Figure 1. Images of fabrics used in the classification experiment.
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Figure 2. Results of the rating experiment. (A) Examples of materials with highest observer consensus for four opponent material

property pairs. (B) Strongest associations across material properties. (C) Results of the correspondence analysis. The two axes are the

two orthogonal dimension determined by the correspondence analysis. The locations of the properties on these axes are shown in

red (FLEX¼ flexible, WABS¼water absorbent, WREP¼water repellent). The numbers refer to the positions of the images in Figure 1

numbered row wise starting from the top left.

Journal of Vision (2013) 13(14):7, 1–19 Giesel & Zaidi 4

Downloaded from jov.arvojournals.org on 03/11/2021



cool: 0.33; water-repellent–water-absorbent: 0.25).
Figure 2A shows examples of the classifications for
each property dimension. The examples illustrate that
even images that belong to the same property
dimension vary on multiple perceptual dimensions. In
addition, some properties were strongly associated
with others (Figures 2B, 2C). We tabulated the
contingency table of frequencies with which an image
had been rated in the two highest scale values for each
of the eight properties, and used correspondence
analysis to reduce the dimensionality of the problem.
Correspondence analysis applies singular value de-
composition to the chi-square statistics of the contin-
gency table, and as in principal component analysis,
the Eigen functions provide a reduced set of orthog-
onal dimensions on which the eight properties and 256
images can be represented (Figure 2C). The first
dimension (CA1), which explained 57.1% of the total
variance in the data matrix, largely coincided with the
properties soft and flexible on the positive side, and
their opponents, rough and stiff, on the negative side.
The second dimension (CA2), which explained 24.8%
of the total variance, was closest to the material
properties cool on one end and warm on the other. As
would be expected, the perceived warmth of a fabric is
often a function of its perceived thickness. Absorbent
sensibly is closer to warm and soft, while repellent is
closer to stiff and rough. Based on the dimensionality
reduction, we focused the subsequent image analyses
on materials classified as soft or rough and on thin and
thick appearing materials. A visual inspection of the
soft and rough images in Figure 2A suggests that the
size of the dominant structure or pattern is a
distinguishing cue between them. Rough materials
have a fine grained structure with sharp transitions,
whereas soft materials have larger structures with
smooth transitions. Within the soft materials there
seems to be a further subdivision into a group of
thicker looking fabrics, and a group with thinner
fabrics that contain broad undulations, probably due
to the suppleness of the fabrics. To determine the
dominant scale of a material’s structure, we analyzed
the images’ amplitude spectra. Since we found no
obvious effect of color in the classification experiment,
we used gray-scale versions of the images for the
frequency analysis.

Figure 3 shows amplitude spectra of pairs of fabrics
chosen to be exemplary of the opposite ends of the
undulation (Figure 3A), thickness (Figure 3B), and
roughness (Figure 3C) properties. The histograms in
the middle column of Figure 3 show the relative energy
in various bands of spatial frequencies. The colored
parts of the bars indicate the amount of energy by
which one of the fabrics exceeds the other one in a
given frequency band. The spectra of undulated fabrics
contained more energy at low frequencies as compared

to spectra of flat fabrics. Spectra of thick and thin
fabrics differed in a frequency band slightly higher than
the first band, and spectra of rough fabrics contained
more energy at middle frequencies than spectra of soft
fabrics.

Image manipulations

To determine whether the amount of energy at
certain spatial scales systematically influences the
perception of the material properties undulation,
thickness, and roughness, we chose three bands of
spatial frequencies based on the image analysis: A
low-frequency band corresponding to undulations in
fabrics covering 2–8 cycles per image (cpi) or 0.57–
2.29 cycles/degree (cpd), a frequency band corre-
sponding to the thickness of the weave or knit (8–15
cpi or 2.29–4.28 cpd), and a middle-frequency band
corresponding to the roughness of the fabric (23–53
cpi or 6.57–15.14 cpd).

To verify that these bands are related to their
corresponding material properties, we assessed the
appearance of images as a function of relative energy
in the three bands. All image transformations were
done in MATLABt (R2012a, The MathWorks,
Natick, MA). All filtering was done by using ideal
band-pass filters or notch filters, respectively. To
increase or decrease the energy in a frequency band,
the frequency band was multiplicatively scaled. To
keep the sum of the energy across the amplitude
spectrum constant, the remainder of the amplitude
spectrum was scaled accordingly. The zero-frequency
component was excluded from the scaling procedure.
The manipulated images had the same mean as the
original images. We constricted scaling to values that
did not result in out-of-range pixel values after the
inverse Fourier transform.

Figure 4 shows the results of multiplicatively scaling
the energy in each of the three bands while keeping the
overall energy constant. The icons in the left-most
column of Figure 4 indicate the spatial frequency
bands. Increasing the energy in the low-frequency band
(Figure 4A, Movie 1) inflates the quilt, whereas
decreasing the energy deflates it. The three-dimensional
appearance of the quilt is largely due to shading
variations that are generally gradual, so the energy is
concentrated at low spatial frequencies. Increasing the
energy in the second frequency band (Figure 4B, Movie
2) increases the thickness of the weave, whereas
decreasing the energy results in a flatter, thinner
appearance. Increasing the middle to high-frequency
energy (Figure 4C, Movie 3) leads to a coarser or
rougher texture, while decreasing the energy in this
frequency range results in a smoother texture. Varying
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the relative energy of a frequency band influences how
much structures at a certain spatial scale contribute to
the overall appearance of the material. It does not alter
existing structures or creates new structure. If a
material’s original spectrum has no structure in a band,
multiplying the energy in this band will not lead to the
desired appearance changes, manipulating, e.g., the
amplitude spectrum of white noise will in general not
result in an appearance change that is related to a
change in material property (Appendix D, Figure S4B).

However, the frequency-band analysis suggests a
method to transfer qualities across materials. Figure
4D shows how the soft and flexible appearance
conveyed by folds can be transferred to a material
originally rated as rough and stiff. For the folded
material, comparing the randomized phase image (UR)
to the whitened amplitude image (AW) demonstrates
that the amplitude spectrum determines the volume of
the undulations, while the phase component determines
the shapes and locations of the folds. A similar

Figure 3. Comparisons of amplitude spectra for opponent material properties summarized by spatial frequency histograms, and

results of nine-level property ranking task for three observers. (Left column) Fabric images with their amplitude spectra. (Center

column) Histograms of amplitude distributions across spatial frequencies. The colored parts of the bars indicate the amount by which

one image exceeds the other. (Right column) Curves show the median relative energy at different frequencies for images sorted to

nine levels, collapsed into three categories (see Appendix A, Figures S1A1–C3 for detailed results). (A) Flat (top) versus undulated

(bottom), (B) Thin (top) versus thick (bottom), and (C) Rough (top) versus soft (bottom) fabrics.
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Figure 4. Original and manipulated images and their amplitude spectra. The middle column shows the original images, the first and

second column show images with increased energy in the frequency bands, and the fourth and fifth column show images with

decreased energy. (A) undulation band, (B) thickness band, (C) roughness band (see also Movies 1–3). (D) Transfer of properties

between materials by using structures contained in the frequency band from 2–8 cpi.
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comparison for the flat textured image reveals that the
amplitude spectrum determines its dominant texture.
When the phase spectrum of the folded material
replaces the phase spectrum of the textured material,
lines are seen at the locations of the folds. Now if the
undulation band (2–8 cpi) of the folded amplitude
spectrum replaces the corresponding band in the
textured amplitude spectrum, the textured material
appears softly folded.

Adaptation to band-limited noise

To determine whether the variations in the magni-
tude of energy at certain spatial scales are sufficient to
influence the perception of material properties, we
tested whether adaptation to each of the three
frequency bands can alter the perception of their
correlated property. In particular, we tested whether
adapting to a specific band of spatial frequencies
decreases the perceived magnitude of the associated
material property.

Methods

Stimuli

We used gray-scale versions of images that had been
classified consistently in the material property classifi-
cation experiment as stimuli. The stimuli are shown in

Figure 5. For each of the three frequency bands, we
used images of two fabrics (middle column of Figure 5),
plus four versions of each of these images with
increased (first and second column in Figure 5) or
decreased (fourth and fifth column in Figure 5) relative
energy in the specific frequency band. The images in the

Movie 3. Effect of increasing and decreasing the energy in the

frequency band 6.57–15.14 cpd on roughness perception.

Movie 2. Effect of increasing and decreasing the energy in the

frequency band 2.29–4.28 cpd on thickness perception.

Movie 1. Effect of increasing and decreasing the energy in the

frequency band 0.57–2.29 cpd on volume perception.
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first (þþ) and the last column (��) show manipulations
resulting from the largest increase and decrease,
respectively, that was possible without having to
correct for out-of-range pixel values. The two other
frequency band manipulations (þ and �) represent
manipulations intermediate to the original and the
maximal possible manipulations. The total energy for
each image was kept constant as was the mean of the
images. The viewing distance was 70 cm. At this
distance the images (150 · 150 pixels) subtended 3.58 of
visual angle.

Noise

For the adapting stimuli, we used band pass-filtered
dynamic white noise, and the corresponding notch-
filtered dynamic white noise, containing all frequencies
except for those in the band. If adaptation to the band
of spatial frequencies attenuates perceived magnitude
of a material property, then adapting to all frequencies
except for those in the band should have the opposite
effect. For each frequency band, we generated 120

images of isotropic white noise, and from each of these
images we created both a band pass-filtered version and
a notch-filtered version. The same ideal band-pass
filters were used that had been used for the image
manipulations in Figure 5. Inverting them produced the
corresponding ideal notch filters. Each image in the
sequence was shown for 250 ms. The order of the noise
images in the sequences was randomized for each
observer. The luminance of the band pass-filtered and
notch-filtered noise patches was equated for mean and
standard deviation, and they were the same size as the
material images.

Procedure

In each trial of this experiment, we presented a test
stimulus paired with one of five comparison stimuli.
The test stimulus was always one of the original images
(middle column of Figure 5). The set of comparison
stimuli consisted of the four manipulated versions of
the test stimulus (þþ, þ, �, ��) and the test stimulus
itself. The test and comparison stimuli were always
presented for 800 ms simultaneously aligned horizon-
tally or vertically.

In the baseline condition, the test stimulus was
presented simultaneously with each of the five com-
parison stimuli, and on each trial observers picked
which of the two materials had more undulation, was
thicker, or was rougher, respectively.

In the adaptation condition, observers repeated the
measurements of the baseline condition but before the
presentation of each pair of stimuli they adapted to
band pass-filtered dynamic white noise presented at the
location of the test stimulus, and to the complementary
notch-filtered dynamic white noise presented at the
location of the comparison stimulus (Figure 6A). Thus,
the test stimulus was always spatially aligned with the
band pass-filtered noise, and the comparison stimuli
were always spatially aligned with the notch-filtered
noise.

Each test stimulus was presented 10 times together
with one of the manipulated comparison stimuli and
20 times together with itself as comparison stimulus.
The different frequency bands/material properties
were tested in different blocks. Before each trial, a
message on the screen instructed the observers which
material property they had to judge. The two different
images belonging to each of the three frequency bands
were tested blocked within the same frequency/
material property block. The first adaptation phase
after the beginning of a block lasted for 60 s, while
subsequent adaptation phases between trials lasted for
10 s. After the end of the adaptation phase there was a
gap of 250 ms before the presentation of the image
pairs. Between blocks there was a pause of 2 min. To
further reduce carry-over effects between successive

Figure 5. Images used in the adaptation and distance

experiment. The middle column shows the original images. The

first and second column depict manipulations of the images

with increased energy in the frequency bands, and the fourth

and fifth column show manipulations of the images with

decreased energy in the frequency bands.þþ and�� indicate

the maximal possible increase or decrease without having to

correct for out-of-range pixel value in the resulting images; þ
and � indicate versions of the images intermediate to the

original and the maximally changed images.
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blocks, the positions of the noise patches and stimuli
were alternated between a presentation to the left and
right, and a presentation above and below of the
fixation point. All presentation sequences (frequency
bands, images, positions of the adaptors) were
randomized between observers. Some of the observers
started with the adaptation condition, others started
with the baseline condition. Except for the adaptation
phase, the experimental sequence was the same in the
baseline and the adaptation condition. The baseline
and the adaptation condition were measured on
different days.

Observers

Five paid observers (two female, three male)
participated in the experiment. Three of them had
already participated in the classification experiment.

Data analysis

For the data analysis, we used the percentage of
trials in which the test stimulus was seen as being more
undulated, thicker, and rougher, respectively, for each
combination of test and comparison stimuli. The data
were averaged across observers. Our main interest was
the effect of adaptation on the responses to the test
stimuli when the comparison stimuli were identical to
the test stimuli, i.e., when the original images were
compared to themselves.

Results

The psychometric curves for the baseline condition
(Figure 6B, black lines) show that the image
manipulations had the expected effect on the material
property judgments. The original images were seen as

Figure 6. Experimental sequence and results of the adaptation experiment. (A) Different frequency bands were tested in different

blocks. Across blocks, the location of the noise patches and stimuli was alternated between left and right of the fixation point, and

above and below. Initial adaptation was 60 s, with 10 s top ups. The stimuli were presented for 0.8 s. (B) Baseline (black) and

postadaptation (red) psychometric curves for material property comparisons of two fabrics per frequency band, averaged across

five observers. The y axis shows the percentage of trials in which the original image (test stimulus) was seen as being rougher,

thicker, and more undulated, respectively, than the images (comparison stimuli) indicated on the x axis. Error bars show 6 one

SEM.
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less undulated, thinner, or softer than the þþ and þ
comparison stimuli, and they were seen as more
undulated, thicker, or rougher than the �� and �
comparison stimuli. The psychometric curves for the
adaptation condition (Figure 6B, red line) show that
after adaptation, observers’ judgments of undula-
tions, thickness, and roughness were depressed. The
effect is particularly clear in comparing the pre-
versus postadaptation results for the original images
(dotted line in Figure 6B). A repeated-measures
analysis of variance (ANOVA) with factors adapta-
tion and material property for the data averaged
across the two images for each property showed a
significant effect of adaptation, overall, F(1, 5) ¼
167.81, p , 0.001, and separately for undulation, F(1,
5)¼ 203.95, p , 0.001, thickness, F(1, 5)¼ 94.62, p ,
0.001, and roughness, F(1, 5)¼ 11.35, p¼ 0.03. There
was a significant effect of image, F(1, 5) ¼ 32.57, p ,
0.005, and a significant interaction between image and
adaptation, F(1, 5)¼ 32.00, p , 0.005. For roughness,
the effect of image was also significant, F(1, 5) ¼
44.51, p ¼ 0.003.

Retinal versus material spatial
frequency

We have expressed frequency bands in retinal spatial
frequencies (cpd), but because all measurements were
done at one distance, they could equivalently have been
expressed in material spatial frequency (cpi), a concept
analogous to object spatial frequencies (Burbeck,
1987). A change in distance alters retinal spatial
frequency but leaves the material spatial frequency
unchanged. To determine whether the perceived
material properties are determined by material spatial
frequencies or retinal spatial frequencies, we conducted
a control experiment in which we presented images of
materials at three different distances.

Methods

Stimuli

We used the same set of stimuli as in the adaptation
experiment (Figure 5). The original images again served
as test stimuli while the comparison stimuli consisted of
the four manipulated images (þþ, þ, �, ��) and the
original image.

Procedure

We varied the viewing distance by using two
matched CRTs, one monitor displaying the test
stimulus at 33, 66, or 132 cm from the observer, and a

second monitor simultaneously displaying the com-
parison stimulus at 66 cm from the observer (Figure
7A). The sizes of stimuli for the three distances
subtended 7.58, 3.88, and 1.98 of visual angle, respec-
tively. The stimuli were presented for 2 s in order to
give the observers time to inspect the fabrics on both
monitors. Each combination of the test stimuli and the
manipulated comparison stimuli was presented 10
times, and the test stimulus was presented 20 times with
itself as comparison stimulus. The different material
properties were blocked. The sequence of viewing
distances and the sequence of material properties were
balanced between observers. The judgments for differ-
ent distances were done in different sessions with at
least a day between sessions. On each trial, observers
reported whether the test stimulus was more undulated,
thicker, or rougher than each of the five comparison
stimuli.

Observer

Measurements were made on three uninformed
observers (one female, two male) who had not
participated in any of the previous experiments.

Results

For the data analyses, we used the percentage of
trials in which the test stimulus was seen as being more
undulated, thicker, and rougher, respectively, for each
combination of test and comparison stimuli. The data
were averaged across observers. Our main interest was
the effect of distance on the responses to the test
stimulus on the test monitor when the comparison
stimulus on the comparison monitor was identical to
the test stimulus, i.e., when the original images were
compared to themselves.

Figure 7B shows that at best there was a weak
overall effect of distance. As in the adaptation
experiment only the results for the original images are
used in the data analysis. A repeated-measures
ANOVA with distance and property as factors, for
data averaged across the two images, was just
significant, F(2, 6) ¼ 7.63, p ¼ 0.043, due to a weakly
significant effect of distance for undulation, F(2, 6) ¼
7.60, p¼ 0.043, but not for thickness, F(2, 6)¼ 0.64, p
¼ 0.572, or roughness, F(2, 6) ¼ 1.49, p ¼ 0.328. The
interaction between distance and image was signifi-
cant, F(2, 6)¼16.35, p¼0.001. The distance effects for
the properties thickness, F(2, 6)¼ 0.64, p¼ 0.572, and
roughness, F(2, 6) ¼ 1.49, p ¼ 0.328, were not
significant. The interaction between distance and
image for roughness was significant, F(2, 6)¼ 7.39, p¼
0.045.
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Discussion

The results for undulation and thickness in Figure
7B show no significant effect of distance on material
perception in the tested range. There was predictable
variability in the data for roughness. The two images
used for roughness show a tendency to be affected in
opposite ways by the increase in the viewing distance.
For the first image, distance causes an increase in
perceived roughness. This image, which was originally
rated as soft, has the critical variations at low to middle
frequencies. These are shifted to higher retinal spatial
frequencies with increasing distance, and that might
have resulted in a rougher appearance. For the second
image, there is a nonsignificant tendency for perceived
roughness to decrease systematically for the largest
viewing distance. The dominant variations in the
second image are already in a high frequency region, so
increasing the distance may have moved them beyond
the window of visibility, thus increasing the relative

effect of lower frequencies, and that could have resulted
in a softer appearance. Overall, material judgments
remain stable over a range of distances from which an
observer would commonly examine materials. This
suggests that visual inferences of material properties are
more likely to be based on estimated material spatial
frequencies than on retinal frequencies. This finding is
in accordance with data from experiments investigating
spatial-frequency discrimination (Burbeck, 1987), spa-
tial frequency memory masking (Bennett & Cortese,
1996), size constancy (Blakemore, Garner, & Sweet,
1972), recognition memory for shapes (Milliken &
Jolicoeur, 1992), and for the extraction of upper case
letters from noise (Parish & Sperling, 1991). It also
seems to be in line with our everyday experience where
material properties do not change massively with
viewing distance. There are of course sensory limita-
tions to this that we intend to investigate more closely
in future experiments

Figure 7. Experimental setup (A), and results of the distance experiment (B). The results for the different images are shown in

separate columns. The x axis indicates the type of comparison stimulus shown on the reference monitor. The y axis shows the

percentage of trials in which the test stimulus presented on the test monitor was chosen as being more undulated, thicker, or

rougher, respectively, than the comparison stimuli. Colors and symbols indicate the different conditions: both monitors at the same

distance (black, circles), test monitor closer to the observer (red, squares), test monitor farther from the observer (blue, triangles).

Symbols indicate the mean across three observers. Error bars show 6 one SEM.
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Agreement between material
property rankings and frequency
bands

To strengthen the generality of the frequency-based
analysis of material properties, we conducted a ranking
experiment to derive the frequency bands from
experimental data. In this experiment we used printouts
of some of the images shown in Figure 1. This
experiment was less well controlled than the monitor
based experiments, but had the advantage that
observers made relative judgments of the material
properties without being required to explicitly label a
material as belonging to a certain property category.
The central question was whether the relative judg-
ments were correlated with the amplitude distributions
in the three frequency bands.

Methods

Stimuli

Gray-scale images of 161 of the fabrics (Figure 1,
leaving out only the printed fabrics) were printed on
white letter-sized paper using a standard laser printer.
The printed images had a size of 4.5 · 4.5 cm and thus
were, when held at arm’s length, approximately of the
same retinal size as the stimuli in the monitor based
experiments.

Procedure

The sequence of the images was randomized in the
stack of papers given to the observers. The observers’
task was to sort the images independently in nine point
classes from ‘‘least’’ to ‘‘most’’ undulated, thick, and
rough. The sorting was carried out on a large table so
that images could be seen simultaneously in order to
facilitate direct comparisons between them. No specific
instructions regarding the viewing distance and the
properties were given to the observers. However, to
illustrate the properties we showed samples of real
fabrics to the observers: A fabric lying flat on the desk,
and the same fabric with folds to illustrate the
undulation property, a thinner and a thicker fabric to
illustrate thickness, and a softer and rougher fabric to
illustrate roughness.

Observers

Material rankings were done by three observers (one
female, two male). One of the observers had already
participated in the classification and the adaptation
experiment, one observer had participated in the

distance experiment, and the third observer was
uninformed as to the purpose of the experiment.

Results

Table 1 shows the inter-rater reliability as measured
by Kendall’s coefficient of concordance (W), which is a
measure of agreement for ordinal data among several
judges who are assessing a set of n objects (Kendall,
1948). It ranges from zero (no agreement) to one
(complete agreement).

Table 2 shows the correlations (Kendall’s rank
correlation coefficient s) between the rankings for the
three properties separately for the three observers. The
rank cross-correlations between the different properties
were below 0.3 for all observers, with the undulation
ratings being negatively correlated with the roughness
ratings.

To examine the correlation between a material’s
rank for a property and its amplitude distribution,
Figure 3 (right column) shows the amplitude distribu-
tions of materials assigned to the different scale levels
separately for the different properties. The band-wise
amplitudes were determined from thresholded ampli-
tude spectra. Since we found that most of an image’s
dominant structure is contained in the top 30% of
amplitudes, only those top 30% of the amplitude were
used. For better visibility, the median energy distribu-
tion across observers’ rankings was collapsed into three
scale levels (Figures S1A1–S1C3 in Appendix A show
the rankings separately for each observer and proper-
ty). In Figure 3, for all three properties the ‘‘most’’
levels (Scale Levels 7–9) exhibited the highest relative
amplitudes in the three bands identified in previous
sections, and the ‘‘least’’ levels (Scale Levels 1–3)
exhibited the lowest relative amplitudes in those bands,
thus corroborating our choice of frequency bands.

Undulated

; Thick

Undulated

; Rough

Thick

; Rough

Obs. 1 0.162** �0.185** 0.202**

Obs. 2 0.248** �0.096 0.257**

Obs. 3 0.132* �0.293** 0.160**

Table 2. Rank correlations (Kendall’s rank correlation coefficient
s) between material property rankings.

Wt v2 df p

Undulation 0.619 297 160 , 0.01

Thickness 0.651 312 160 , 0.01

Roughness 0.692 332 160 , 0.01

Table 1. Interrater concordance for material property rankings.
Wt is Kendall’s coefficient of concordance (W) corrected for ties
within raters.
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Validation of frequency bands from
ranking data

The perceptual and adaptation results justify linking
the material properties of roughness, thickness, and
undulation to specific frequency bands. However, the
frequency bands were chosen by visual inspection, so
the question remains whether they can also be justified
on statistical principles. To capture the most general
linear relationship between property rankings and
amplitude spectra, we used canonical correlation
analysis (CCA). For two sets of variables, CCA finds
mutually orthogonal functions consisting of pairs of
linear combinations (variates) of each of the variables
that have maximum correlation with each other (see
Appendix B.1). The number of functions is limited to
the cardinality of the smaller set, so that three functions
encapsulate all of the 3 · 37 correlations across the 161
images between the dependent variables consisting of
the three median property rankings across observers
and the independent variables consisting of the relative
image amplitudes divided into 37 equal-width fre-
quency bands. Canonical correlation is more general
than multivariate regression and linear discriminant
analysis in allowing linear combinations of dependent
as well as independent variables, and is invariant to
affine transformations of the variables, which is useful
when dealing with ranking measurements.

Figure 8A shows the correlations (loadings) of the
independent variables with the independent variate,
and Figure 8B shows the squared loadings, i.e., the
proportion of variance a variable shares with the
variate. The first to third rows show the loadings for the
first to third canonical functions. The loadings of the
dependent variables on the dependent variate are
shown in Table 3. The correlation between the first
canonical variates is 0.805 (p , 0.01) (Appendix B.1,
Table S2). The first dependent variate has a high
positive correlation with the roughness rankings, and a
strong negative correlation with the undulation rank-
ings. In agreement with the bands (shaded areas) that
we derived from inspection, the loadings of the first
independent variate are highly negative in the undula-
tion band and highly positive in the roughness band.
This variate accounts most for variance in the
frequencies belonging to the undulation band. The
correlation between the second canonical variates is
0.564 (p , 0.05). The independent variate has a high
positive correlation with the thickness ratings, and the
dependent variate has the highest loadings and squared
loadings in our thickness band. The correlation
between the third canonical variates is 0.520 (p . 0.05).
All rankings correlate positively with the third depen-
dent variate, but the correlation with roughness is
highest. Corresponding to that, the third independent

variate has fairly low loadings, but the highest absolute
values are in our roughness band, and the selectivity is
more apparent in the squared loadings. Overall, the
CCA analysis validates our choice of frequency bands.
If the loading functions were used in image manipula-
tions, the effects would be similar to using our
frequency bands. The opponent relationship between
roughness and undulation may be the result of a
physical constraint, or a bias in the sample not having
many rough appearing fabrics with folds. Note that in
the image manipulations (Figure 4), when we increased
the energy in the undulation band while keeping the
total energy constant, it effectively reduced the energy
in the other bands.

If a larger set of material properties could be shown
to depend on image spatial frequency, CCA could be

Figure 8. Results of canonical correlation analysis. (A) Loadings

for the independent variable (amplitudes in 37 frequency bands

for 161 images). (B) Squared loadings for the independent

variable. Error bars denote 95% confidence intervals resulting

from 1,000 replications of the canonical correlation analysis. In

each bootstrap, a new sample was created by sampling with

replacement from the data set.

1. Variate 2. Variate 3. Variate

Undulation �0.860 �0.074 0.505

Thickness �0.055 0.816 0.575

Roughness 0.781 �0.120 0.612

Table 3. Loadings of the dependent variables.
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used as the foundation of extracting optimal frequency
bands by running ranking experiments on a much
larger sample of materials. In Appendix B.2 we present
one possible procedure to derive orthogonal frequency
bands for the properties discussed in this paper by
applying singular value decomposition to the indepen-
dent loading functions weighted by the dependent
loading functions.

General discussion

The main results of this paper are that material
properties, such as roughness, thickness, and undula-
tion, are characterized by specific scales of luminance
variations. These results were derived from perceptual
scaling of a large sample of fabric images, combined
with image analyses and statistical dimensionality
reduction. The 2-D luminance variations arise from the
3-D textures of the materials, and are used by the visual
system in perceiving local 3-D structure, as confirmed
by movies showing that judgments of 3-D roughness,
thickness, and undulations vary continuously as a
function of relative contrast in corresponding 2-D
frequency bands, and are predictably altered by
adaptation to dynamic noise at the corresponding
scales. The appearance changes that result from the
manipulations of the amplitude distributions in the
three frequency bands are all caused by changes of the
shading components at different spatial scales. This is
most obvious for the undulation band, where varia-
tions give rise to 3-D structures that extend across large
parts of the sample, but it also applies to variations of
the mesostructure resulting in changes in apparent
thickness and roughness. The perceived material
properties are thus functions of the 3-D structures of
the materials, which are mainly conveyed by shading
cues.

The results of the canonical correlation analysis
indicate that the correlation between perceptual ranks
and frequency-band amplitudes is not perfect. This may
partly be due to the paper sorting experiment being a
noisy procedure. However, we are almost certain that
there are additional low-level factors, including limita-
tions imposed by the contrast sensitivity for spatial
frequencies (Watson & Ahumada, 2005), and cross-
band and frequency-dependent cross-orientation
masking effects on the saliency of spatial frequencies
(Li & Zaidi, 2009). In addition, it remains to be tested
whether high-level mechanisms, such as recognition,
potentiate specific low-level cues.

Since the earliest stage of cortical visual processing
consists of neurons that filter the visual scene in terms
of spatial frequencies and orientations (Hawken &
Parker, 1987; Schiller, Finlay, & Volman, 1976), it is

not surprising that spatial frequencies play an impor-
tant role in pre-attentive texture discrimination (Julesz,
1962), and texture matching (Richards & Polit, 1974).
More recently, direct scene categorization schemes
proposed correlations between specific configurations
of power spectra and perceptual scene dimensions such
as naturalness and openness (Oliva & Torralba, 2001).

While the visual perception of roughness, thickness,
or undulation has not been investigated extensively, the
estimation of the roughness of surfaces or terrains from
images has long been an important topic of research in
machine vision. A wide array of methods has been
employed to this end, including spatial frequency
analysis. In this context, it has been found that spatial
frequency analysis was often inferior to other methods,
e.g., statistics derived from gray-tone co-occurrence
probabilities (for reviews see Haralick, 1979; Tuceryan
& Jain, 1998). However, the focus of this line of
research was on the reliable identification of physical
structures as, for example, required in remote sensing.
Here, we were primarily concerned with material
appearance and not with the veridical recovery of
surface properties. Surface properties and illumination
geometry are conflated in the spatial frequency
information. The amplitude distribution changes sys-
tematically with changes in pose, scale, and illumina-
tion, and that seems correlated with the resulting
changes in material appearance. An interesting case is
presented by slanted surfaces. When 2-D textures are
slanted, the spatial frequencies are increased in the
image, orientation flows are created (Li & Zaidi, 2004),
and the brightness is reduced for Lambertian surfaces.
However, the case is more complicated when 3-D
structures are slanted as the structure determines the
change in brightness (Nayar & Oren, 1995) and spatial
frequency (Dana, Van Ginneken, Nayar, & Koender-
ink, 1999). To analyze the interaction of pose, scale,
and illumination on material perception, we chose
images from the KTH-TIPS database (Fritz, Hayman,
Caputo, & Eklundh, 2004). In general, slanting
materials increased the spatial frequencies in the image
at short distances, and the effect is small or even absent
for larger distances (Appendix C, Figures S3A–D).
Illumination from the side emphasized the finer
structure of the fabrics, thus causing a shift to higher
image frequencies. Interestingly, the energy peaks for
the fabrics were generally located in one of the
previously identified frequency bands, and the per-
ceived qualities followed the bands, e.g., when the
spatial frequency peak moved to frequencies higher
than the roughness band, the material appeared
increasingly flat and smooth. Given the systematic
interaction between the amplitude distribution and
changes in pose, scale and illumination-geometry
caused by the complexity of real materials (Anderson,
2011), the amplitude distributions might also provide
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cues to the separation of surface-reflectance and
illumination when observers can view multiple slants
and tilts (Barron & Malik, 2011).

Our results seem to be the first recognition of the role
played in shape from shading by relative contrast at
different spatial frequencies. Orientation flows created
by isophotes have also been shown to play a role in
conveying 3-D shape (Dragnea & Angelopoulou, 2005;
Kunsberg & Zucker, 2012; Pentland, 1984b; Šára,
1995), and we would probably get greater adaptation if
the orientations in the noise were matched to the
orientations in each material, but in this case the noise
would be specific to each material rather than to
general properties. Our frequency band manipulations
predict specific properties across materials because they
do not alter the orientation structure resident in each
material, but it is unlikely that specific orientation flows
are associated with specific material properties.

The neural substrate for the proposed frequency
analysis remains to be investigated. fMRI studies have
implicated fusiform and parahippocampal regions as
part of the network that processes surface properties
(Cant & Goodale, 2007; Cavina-Pratesi, Kentridge,
Heywood, & Milner, 2010), but there have been no
physiological studies of how the neural network
extracts material structure from the outputs of V1
neurons which are tuned to fairly narrow spatial
frequency bands and process retinal images in parallel.
Two-dimensional textures have been analyzed and
synthesized by filter responses at multiple scales and
orientations (De Bonet, 1997; Heeger & Bergen, 1995;
Portilla & Simoncelli, 2000) with some success. These
methods may not capture all the local detail of
structured textures that human observers perceive, but
by substituting receptive fields of V1 neurons for the
filters, explicit neural models can be built and tested for
the scale based estimation of material properties.

The somatosensory system supports fine discrimi-
nation of surface textures, comprising at least four
major dimensions: roughness versus smoothness,
hardness versus softness, stickiness versus slipperiness,
and warm versus cool (Hollins, Bensmaı̈a, Karlof, &
Young, 2000). There is a close correspondence between
the haptic and visual estimates of the roughness of real
surfaces (Bergmann-Tiest & Kappers, 2007). For both
senses, the medium material spatial frequency band had
the highest correspondence with the observers’ rough-
ness orderings, and there was a drop in estimated
roughness at high spatial frequencies corresponding to
the decrease in sensitivities of both the visual and tactile
systems (Bergmann-Tiest & Kappers, 2007; Connor &
Johnson, 1992). These results suggest that either both
visual and tactile systems directly estimate roughness
from the scale of the surface microstructure, or that
roughness is exclusively a haptic percept and its visual
estimation is based on material recognition and

retrieval of roughness information from memory
(Bergmann-Tiest & Kappers, 2007). The effects of
haptic feedback can be large on visual percepts, but
they seem to be short-lived (Meng & Zaidi, 2011), so
whether visual roughness perception is calibrated by
long-term haptic experience, still needs to be investi-
gated.

Analyzing and synthesizing natural patterns is
essentially an unsolved problem (Mumford & Desol-
neux, 2010). In computer graphics, fabric rendering,
especially in animated sequences is an especially
important and difficult problem (Selle, Su, Irving, &
Fedkiw, 2009). Some approaches use 3-D texels to
achieve realism, but at the cost of computational speed
(Durupinar & Güdükbay, 2007). Our material manip-
ulations illustrate a novel and rapid method for altering
properties in images of real materials, and for
transferring properties across materials. Our methods
could also enhance the realism of synthetically gener-
ated materials by endowing them with recognizable
properties. As the image manipulations (Figure 4)
imply, this will be more possible when there is at least
some structure at the relevant scales (Appendix D).

Keywords: material perception, spatial frequency,
adaptation, image statistics
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